(p. 7) Data is not only becoming more available but also more understandable to computers. Most of the Big Data surge is data in the wild — unruly stuff like words, images and video on the Web and those streams of sensor data. It is called unstructured data and is not typically grist for traditional databases.
But the computer tools for gleaning knowledge and insights from the Internet era’s vast trove of unstructured data are fast gaining ground. At the forefront are the rapidly advancing techniques of artificial intelligence like natural-language processing, pattern recognition and machine learning.
Those artificial-intelligence technologies can be applied in many fields. For example, Google’s search and ad business and its experimental robot cars, which have navigated thousands of miles of California roads, both use a bundle of artificial-intelligence tricks. Both are daunting Big Data challenges, parsing vast quantities of data and making decisions instantaneously.
. . .
To grasp the potential impact of Big Data, look to the microscope, says Erik Brynjolfsson, an economist at Massachusetts Institute of Technology’s Sloan School of Management. The microscope, invented four centuries ago, allowed people to see and measure things as never before — at the cellular level. It was a revolution in measurement.
Data measurement, Professor Brynjolfsson explains, is the modern equivalent of the microscope. Google searches, Facebook posts and Twitter messages, for example, make it possible to measure behavior and sentiment in fine detail and as it happens.
In business, economics and other fields, Professor Brynjolfsson says, decisions will increasingly be based on data and analysis rather than on experience and intuition. “We can start being a lot more scientific,” he observes.
. . .
Research by Professor Brynjolfsson and two other colleagues, published last year, suggests that data-guided management is spreading across corporate America and starting to pay off. They studied 179 large companies and found that those adopting “data-driven decision making” achieved productivity gains that were 5 percent to 6 percent higher than other factors could explain.
The predictive power of Big Data is being explored — and shows promise — in fields like public health, economic development and economic forecasting. Researchers have found a spike in Google search requests for terms like “flu symptoms” and “flu treatments” a couple of weeks before there is an increase in flu patients coming to hospital emergency rooms in a region (and emergency room reports usually lag behind visits by two weeks or so).
. . .
In economic forecasting, research has shown that trends in increasing or decreasing volumes of housing-related search queries in Google are a more accurate predictor of house sales in the next quarter than the forecasts of real estate economists. The Federal Reserve, among others, has taken notice. In July, the National Bureau of Economic Research is holding a workshop on “Opportunities in Big Data” and its implications for the economics profession.
For the full story, see:
STEVE LOHR. “NEWS ANALYSIS; The Age of Big Data.” The New York Times, SundayReview (Sun., February 12, 2012): 1 & 7.
(Note: ellipses added.)
(Note: the online version of the article is dated February 11, 2012.)